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Abstract: This paper addresses an optimal charging and order service integration decision 

problem for an electric taxi (ET) fleet, operating by an e-platform. Compared with the 

conventional fuel taxis, the relatively long out-of-service time for recharging ETs significantly 

affects the revenue of drivers and the service level of the e-platform. In this study, we propose 

a charging-and-order-serve decision (COSD) system to jointly determine the ETs' dispatching 

and charging schemes. The dynamic optimization problem is formulated as a centralized multi-

period stochastic model to maximize the total revenue of the fleet over a finite operational 

horizon. We develop an efficient algorithm based on the framework of rolling-horizon and 

considering uncertain orders of passengers. The result of the numerical experiment 

demonstrates the effectiveness of the proposed approach. 

Keywords: Electric taxi; charging and order serving; multi-period stochastic model; dynamic 

decision; rolling horizon;  

1 Introduction 

The electric vehicle (EV) has become an effective way to alleviate the environmental pollution 

caused by traditional fuel vehicles. Governments around the world are vigorously promoting 

electric vehicles. At the same time, a large number of electric vehicles are in operation on the 

online e-hailing platform. For example, an online hailing platform, Caocao has replaced all its 

vehicles with electric vehicles. Didi also plans to launch one million electric vehicles to provide 

travel services in 2020; Uber has proposed an Uber-green plan to replace traditional fuel 

vehicles with electric vehicles. In the following context, the vehicles operated on the platform 

are named as electric taxies (ETs for short). However, compared with fuel taxies, ETs have two 

main differences: First, ETs usually need to charge for one or two times during its operational 

time, due to the limited mileages in practice (200-300 km); Second, the charging time from 

empty to full power is about 0.5-5 hours depending on fast recharging modes, which implies 

that ETs have to quit from the e-platform (in off-line status) for relatively long time. The 

charging convenience of ETs is closely related to the number and layout of charging stations. 

In many cities, charging stations are insufficient comparing with the increasing number of ETs 

and the layout of these stations is not be well designed as well. Some stations in center or 

business areas are very busy and drivers have to wait in a long queue for charging their ETs, 

while in some remote areas, the utilizations of charging stations are usually low.  

Let us consider a scenario that before the coming peak time, most ETs in a district (maybe the 

center of a city) may be in middle or low power. Independent drivers of these ETs decide to 

quit from the e-platform and go to nearby charging stations. In this situation, the service 

capacity (i.e., the number of available ETs) of the e-platform may decreases, which cannot 

satisfy the coming demands at peak time. Even worse, plenty of drivers going to the same 

stations may incur congestion in these stations. These drivers have to wait for a long time in the 
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queue, which further deteriorates the low service capacity of the e-platform at peak time. The 

charging operations of ETs may bring dramatic fluctuations of the service capacity of the e-

platform.  Therefore, the e-platform needs a centralized decision and scheme for ETs' service 

and charging operations considering the characteristics of ETs' charging operations and the 

current situation of charging stations. The illustration of the order-service and charging 

operations in an e-platform is presented in Figure 1. 

  
Figure 1: Illustration of order serve and charging operation in an e-hailing platform  

 

2 Literature review 

The charging problem of electric vehicles has been widely concerned in the transportation, 

operation optimization, and power engineering fields. However, most of the literature focuses 

on charging for private electric vehicles. There are few papers studied on the charging problem 

for an ETs fleet of the e-hailing platform. In the following, related research will be reviewed 

from two aspects: private electric vehicles charging problem and ETs charging problem. 

2.1 Charging of private electric vehicles 

At present, most of the research focuses on the charging problem of private electric vehicles 

and specifically considers the following two situations: charging in the community and 

charging in transit. 

2.1.1 The problem of charging in the community 
The community charging problem is usually considered to reduce the queuing and charging 

cost of electric vehicles under the constraints of grid resources. For a single charging station in 

a community, García-Álvarez, et al. (2018) and Hernández-Arauzo, et al. (2015) reduce the 

total charging delay under uncertain vehicle charging time and power supply capacity 

constraints. To coordinate charging station workload among different regions, Flath, et al. 

(2014) consider charging problem from the dimensions of time and space and stimulates drivers 

to select appropriate charging stations to balance the inter-regional grid load and charging 

waiting time based on price. Besides, some literature has studied how to coordinate the private 

electric vehicles to charge from the perspective of the power grid (Cao, et al., 2019; Umetani, 

et al., 2017; Wei, et al., 2014). 

2.1.2 The problem of charging in transit 

In addition to the research on charging in a community, some papers consider the charging in 

transit problem for private electric vehicles. Usually, in this kind of problem, the current electric 

power of electric vehicles is insufficient to support a journey, so it is necessary to select a 

charging station and charge for the electric vehicle on the way. To minimize the waiting time 

of electric vehicles, Qin, et al., (2011) have studied the selection of charging stations under a 
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given driving path. Under the same problem and objective function, Gusrialdi, et al., (2017) 

coordinates the selection of charging stations based on the collected traffic information and 

charging station status information. Sweda, et al., (2017) introduces charging cost into the 

selection of charging stations in a road network, that is, drivers reduce the charging cost caused 

by charging times and charging speed based on deciding where to charge and the amount of 

electricity. 

Some papers (Schiffer, et al., 2017; Montoya, et al., 2017; Liao, et al., 2016) consider the VRP 

with charging station selection. He, et al., (2014) and Cen, et al., (2018) considered the problem 

of minimizing the charging cost under the condition of user equilibrium in the road network. In 

the case of vehicles charging in a road network, Sweda, et al., (2017) proposed an effective 

algorithm to find the optimal path and charging strategy based on the availability of power 

stations. Cao, et al., (2017) proposes a communication framework for electric vehicles, which 

recommends the relevant information of charging stations to drivers to help them choose the 

appropriate path and charging station. Baum, et al., (2019) takes into account a variety of 

charging station types, i.e. switching station, ordinary charging station and fast-charging station, 

as well as minimizing travel time with optional charging capacity. 

2.2 The charging problem of e-hailing platform 
The problem of e-hailing platform vehicles charging has not attracted enough attention, 

although e-hailing platforms are becoming more and more popular. There are obvious 

differences between e-hailing platform charging problem and private electric vehicle charging 

problem. First of all, e-hailing platform vehicles are serving passengers that charge is not 

allowed in the serving process. Secondly, the operation of an e-hailing platform is for profit, so 

it is necessary to consider not only how to reduce the cost factors such as charging costs and 

queuing time, but also serve more passengers to obtain more revenue. In this paper, we will 

review the related literature from two aspects: the optimization of e-hailing platform vehicle 

charging decisions and the joint optimization of order service and charging assignment. 

2.2.1 Charging decision optimization 

Some papers studied the model and algorithm to optimize charging costs for a single network. 

Tian, et al., (2016) predicts the current state of each ETs by detecting the historical charging 

data and real-time GPS trajectory and recommends the best charging station for ETs to 

minimize their driving distance and waiting time. Niu, et al., (2015) considered the overall 

charging coordination from the perspective of the ETs fleet, to minimize the total charging cost, 

charge station load, and maximize the utilization rate of charging equipment. Based on Niu's 

research, Yang, et al., (2015) considered the charging coordination optimization of ETs fleet 

from the perspective of the time-space dimension. 

2.2.2 Joint optimize of charging and order serving 

Yang, et al., (2018) proposed a two-stage charging coordination model. In the first stage, 

optimal charging time is selected based on the power state of electric vehicles, the time-varying 

income, and the queuing situation of charging stations; then, the appropriate charging stations 

are selected to reduce the queuing time through the game method. Ke, et al., (2019) considered 

a shared online platform where ETs and gasoline vehicles coexist and the market grows over 

time. ETs’ drivers should manage their work and charging plan to balance the charging cost 

and operating income only from the time dimension. Sassi, et al., (2017) studied the problem 

of assigning orders for ETs and fuel vehicles when the passenger order information was 

completely confirmed. Besides, Hua, et al., (2019) considered an ET sharing platform to jointly 
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optimize the long-term charging station facility planning and real-time fleet operation (vehicle 

scheduling and charging decision-making) when the arrival of customers is uncertain. 

Through the above review on private electric vehicles charging problem and e-hailing platform 

charging problem. we can find that most papers focus on the charging decision optimization of 

private electric vehicles in the community and transit. The optimization goal is always to 

minimize the charging cost of electric vehicles or the load of the community power grid. For 

the charging problem of the e-hailing platform, the existing parser only put forward the charging 

scheduling model and algorithm from the perspective of minimizing charging costs (including 

queuing time) of single ET. Some papers have studied the joint optimization of order service 

and charging assignment for the e-hailing platform but assuming that the order demand 

information is known. The optimization problem is established as a deterministic assignment 

scheduling model. Few papers can make decisions based on real-time information. 

The remainder of the paper is organized as follows. Section 3 analysis the charging and order 

serving problem. And a multi-period stochastic model will be built. In Section 4, we convert 

the stochastic model into deterministic model based on the rolling-horizon framework. In 

Section 5, the performance of the model will discuss throughout the numerical experiment. And 

the conclusions are drawn in Section 6. 

3 Problem analysis and formulation 

In this section, we first analyze the proposed charging-and-order-serve decision (COSD) system, 

and then formally state the problem and corresponding assumptions.  

3.1 Charging-and-order-serve decision system 
The COSD system is a tactical level module embedded in the e-hailing platform, as illustrated 

in Figure 2. In this study, an e-hailing fleet with serval electric taxies is considered. The real-

time status of the fleet can be collected to e-platform which includes availability, location, state 

of charge (SOC), and so on. The status of ETs and charging stations can be monitored with the 

support of advanced technologies, such as IoT, GPS, etc. With collected real-time information, 

the COSD system will make the order-serving decision and charging decision jointly to 

maximize the total revenue of all ETs. More specifically, the system will determine which ETs 

should serve coming orders and which ETs should be charged. After the decision, the system 

will collect the information of arrival orders and assign ETs to serve them based on real-time 

matching and routing module and compute a price for passengers based on the pricing module. 

And ETs which should be charged will drive to a central charging station. The operation of the 

platform is complex and is the coordination of many modules. However, in this study, we are 

forced on the COSD system and simplify other modules.  
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Figure 2: Illustration of an e-hailing platform with COSD system 

3.2 Problem description  

Let us consider an e-hailing platform that manages an electric taxis fleet to provide exclusive 

delivering service for passengers. The platform only operates in a finite time horizon and can 

be divided into 𝑇 discrete periods. The period index is denoted as 𝑡, 𝑡 ∈  { 1,2, . . . , 𝑇} . Under 

this discrete framework, at beginning of each period, the platform will make decisions based 

on the current state of all ETs and the workload of charging station. An ET can be one of the 

following statuses: 1) being available and wait to serve coming orders; 2) on served and 3) 

being charged at charging station. And we use 𝐴𝑡 to represent all available ETs of fleet and 𝑃𝑡 

to represent all charging ETs at the beginning of period 𝑡. Normally, we have |𝐴𝑡| ∪ |𝑃𝑡| = 𝐸, 

where 𝐸 denotes the number of all ETs of fleet. Without loss of generality, we assume that ETs 

are homogeneous with the same battery capacity, and discretize into 𝐾 levels. Through some 

IOT technologies, the platform can obtain the residual electricity of vehicles at any time. For 

an ET with 𝑘, 𝑘 ∈ {1, … , 𝐾} level, its SOC is in interval (
𝑘−1

𝐾
,

𝑘

𝐾
] and an ET with 0 level means 

it cannot serve any passengers and need to be charged immediately. The district in which the 

fleet operates in is divided into 𝐼 small cells that passengers always travel from one cell to 

another. The cell index is denoted as 𝑖, 𝑖 ∈ 𝐼. We assume that there will be a charging station to 

provide exclusive charging serve for ETs in each cell. The ETs in the cell 𝑖 only charge at the 

charging station of cell 𝑖. The time and SOC consumed from the location to the charging station 

can be ignored. Also, we assume that charging one SOC level will consume one period. Thus, 

the available ET set at period 𝑡 is 𝑆𝑡 = {𝑠𝑡,𝑖,𝑘|0 < 𝑘 ≤ 𝐾, 𝑖 ∈ 𝐼}, where 𝑎𝑡,𝑖,𝑘 is the number of 

available ETs with level 𝑘 in cell 𝑖. And the out-serve ETs is denoted as 𝑃𝑡 = {𝑝𝑡,𝑖,𝑤|0 < 𝑤 ≤

𝐾}, where 𝑝𝑡,𝑖,𝑤 is represent the number of ETs with type 𝑘 in cell 𝑖 at period 𝑡.  

Similarly, passenger's orders can be classified into 𝐾 types according to the requested power 

from the origin to the destination that passengers released. The order type index is denoted as 𝑙 
and computed by 𝑙(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝐼 . In this study, the passengers are randomly arriving with 

unknown distribution. We use 𝐹(𝑑̃𝑡,𝑖,𝑗) = {𝑑̃𝑡,𝑖,𝑗|𝑖, 𝑗 ∈ 𝐼}  to represent the set of unknown 

probability distribution function, where 𝑑𝑡,𝑖,𝑗 represent the number of orders from cell 𝑖 to cell 

𝑗 during period 𝑡, which are random variables. Besides, this study assumes that the order serve-

time (i.e., ET traveling time) is an input parameter 𝜕(𝑖, 𝑗) , depending on its origin and 

destination, which are estimated by the advanced real-time transportation information and 

navigation systems, such as Google map and Amap.  
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As aforementioned, the operational framework of COSD system is illustrated in Figure 3. At 

the beginning of period 𝑡 , COSD system needs to make the charging decision 𝑋𝑡 =

{𝑥𝑡,𝑖,𝑘|0 ≤ 𝑘 < 𝐾, 𝑖 ∈ 𝐼}  and the order-serve decision 𝑌𝑡 = {𝑦𝑡,𝑖,𝑗,𝑙|0 ≤ 𝑘 ≤ 𝐾, 𝑖, 𝑗 ∈ 𝐼} . 

Specifically, 𝑥𝑡,𝑖,𝑘 represents the number of available ETs (i.e., 𝑆𝑡) in cell 𝑖 with type 𝑘 which 

need to be fully charged, and 𝑦𝑡,𝑖,𝑗,𝑘 specifies the number of available ETs with type 𝑘 to serve 

the special orders from cell 𝑖 to cell 𝑗 which are arrival during the current period. Note that an 

order with type 𝑙(𝑖, 𝑗) can only be served by type 𝑘 ETs, which satisfy 𝑘 ≥ 𝑙(𝑖, 𝑗). During the 

period, some orders may be not served, thus we use 𝑚𝑡,𝑖,𝑗,𝑘 to represent the number of orders 

travel cell 𝑖 to cell 𝑗 which are actually served by type 𝑘 ETs. If the ETs driver served orders, 

they will obtain a reward 𝑟(𝑙(𝑖, 𝑗)) . The reward has already been subtracted from the operation 

cost but not the charging fee. If there are no available ETs for serving order during period 𝑡, the 

order will lose and platform will suffer a penalty cost 𝜃(𝑙(𝑖, 𝑗)).  

 

 

Figure 3: Operation framework of COSD system 

To sum up, the problem addressed in this paper is to determine the ET charging and order 

serving decision in a finite horizon to maximize the total reward of the fleet. Notations 

frequently used throughout the paper are listed in Table 1. And the problem has the following 

important assumptions: 

⚫ An ET assigned to an order will pick up a passenger(s) immediately and travel to another 

cell. The SOC and time consuming from ETs location to passengers origin is ignored  

⚫ Each cell will have a charging station with 𝑁 chargers. The travel time from the location 

of ETs to the station can be ignored. Furthermore, the station provides exclusively charging 

service for the ET fleet 

⚫ ET's drivers are employees of e-hailing platform and always comply with the instructions 

sent from the platform. In the numerical experiment section, a decentralized setting is 

addressed in which drivers are self-employees and want to maximize their revenues 

independently.  

⚫ Lastly, we consider impatient passengers. Passengers will switch to other transportation 

modes, such as subways, buses, or other e-hailing platforms if their orders are not 

confirmed in the current period. 
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Table 1: main notions in this paper 

Indexes and parameters 

𝑡 Period index, 1 ≤ 𝑡 ≤ 𝑇 

𝑘 ET type index, 0 ≤ 𝑘 ≤ 𝐾 

𝐼 Set of cells 

𝑆𝑡 Set of available ETs of period 𝑡 

𝑠𝑡,𝑖,𝑘 Number of available ETs of type 𝑘 in cell 𝑖 of period 𝑡 

𝑃𝑡 Set of charging ETs of period 𝑡 

𝑝𝑡,𝑖,𝑤 Number of ETs with type 𝑘 in cell 𝑖 of period 𝑡 

𝐹(𝑑̃𝑡,𝑖,𝑗) Set of unknown probability distribution function of 𝑑̃𝑡,𝑖,𝑗 

𝑑̃𝑡,𝑖,𝑗 Number of random orders from cell 𝑖 to cell 𝑗 of period 𝑡, 𝑖, 𝑗 ∈ 𝐼 

𝑙(𝑖, 𝑗) Type of orders from cell 𝑖 to cell 𝑗 

𝑟(𝑙(𝑖, 𝑗)) Reward of serving an order with type 𝑙(𝑖, 𝑗) 

𝜃(𝑙(𝑖, 𝑗)) Penalty of losing an order with type 𝑙(𝑖, 𝑗) 

𝜕(𝑖, 𝑗) Consumed time from cell 𝑖 to cell 𝑗 

𝑚𝑡,𝑖,𝑗,𝑘 Number of type 𝑘 ETs which are actually served order from cell 𝑖 to cell 𝑗 

Decision variable 

𝑥𝑡,𝑖,𝑘 Number of ETs should be charged in cell 𝑖 of period 𝑡 

𝑦𝑡,𝑖,𝑗,𝑘 Number of ETs should serve coming order from cell 𝑖 to cell 𝑗 of period 𝑡 

In this problem, ETs can be seen as a special kind of reusable resources. As illustrated in Figure 

4, an ET with type 𝑘 at period 𝑡 will be unavailable until the beginning of period 𝑡 + 𝐾 − 𝑘, if 

it is assigned to be charged (dubbed as Case (a)). Or it will be available at the beginning of 

period 𝑡 + 𝜕(𝑖, 𝑗), if it is assigned to serve order 𝑙(𝑖, 𝑗) (dubbed as Case (b)). However, different 

from the common reusable resource, such as equipment or machines, the ET's SOC changes 

when it is available once more, and its usability may thus be affected considerably. For example, 

the SOC is increased to 𝐾 in Case (a), but it decreased to 𝑘 − 𝑙(𝑖, 𝑗) in Case (b). On the other 

hand, as the orders randomly arrive during each period, the corresponding number of assigned 

ETs successfully serving orders (i.e., 𝑚𝑡,𝑖,𝑗,𝑘) is thus a random variable affected by the random 

orders. In this paper, we are forced on the joint scheme of ETs charging and order serving. The 

order arrival sequence and the assigned rule are simplified. 

 

-132-



 
Kaize Yu, Pengyu Yan and Zhibin Chen 

8 
 

 

Figure 4: Illustration of ETs' reusable feature 

3.3 Problem formulates 
In this section, the problem will be formulated in a multi-period stochastic model. 

3.3.1 Objective function  
The objective of the model is to maximize the total reward of whole fleet over 𝑇 horizon. 

Thus, the expected reward of period 𝑡 is  

 

𝑟𝑡
𝑠 = ∑ ∑ ∑ [𝑟(𝑙(𝑖, 𝑗)) × ∑ 𝑚𝑡,𝑖,𝑗,𝑘

𝐾
𝑘=𝑙(𝑖,𝑗) − 𝜃(𝑙(𝑖, 𝑗)) × (𝑑̃𝑡,𝑖,𝑗 −∞

𝑑̃𝑡,𝑖,𝑗=0𝑗∈𝐼𝑖∈𝐼

∑ 𝑚𝑡,𝑖,𝑗,𝑘
𝐾
𝑘=𝑙(𝑖,𝑗) )

+
] 𝑓𝑡(𝑑̃𝑡,𝑖,𝑗)                                                                                                     (1) 

 

where 𝑟(𝑙(𝑖, 𝑗)) × ∑ 𝑚𝑡,𝑖,𝑗,𝑘
𝐾
𝑘=𝑙(𝑖,𝑗)  are the reward of serving orders and 𝜃(𝑙(𝑖, 𝑗)) ×

(𝑑̃𝑡,𝑖,𝑗 − ∑ 𝑚𝑡,𝑖,𝑗,𝑘
𝐾
𝑘=𝑙(𝑖,𝑗) )

+
  is the penalty cost of the unsatisfied orders. 

3.3.2 Constraints   
Base on the problem statement in Section 3.2, four classes of constraints need to be 

considered in the problem. 

(1) Capacity constraints of available ETs 

Naturally, the ETs which assign to be charged and serve coming orders should less than the 

available ETs of different types, as shown in below constraints. Note that the ETs with full 

SOC don’t need to charge and ETs with zero SOC cannot serve orders.  

 

∑ 𝑦𝑡,𝑖,𝑗,𝐾
𝐾
𝑙=1 ≤ 𝑠𝑡,𝑖,𝐾， 1 ≤ 𝑡 ≤ 𝑇, 𝑖 ∈ 𝐼                                                                                    (2) 

 

𝑥𝑡,𝑖,𝑘 + ∑ 𝑦𝑡,𝑖,𝑗,𝑘𝑗∈𝐼 ≤ 𝑠𝑡,𝑖,𝑘 ， 1 ≤ 𝑡 ≤ 𝑇,  1 ≤ 𝑘 < 𝐾, 𝑖 ∈ 𝐼                                                   (3) 

 

𝑥𝑡,𝑖,0 ≤ 𝑠𝑡,𝑖,0 ， 1 ≤ 𝑡 ≤ 𝑇, 𝑖 ∈ 𝐼                                                                                              (4) 

 

(2) Served orders constraints  

In our framework, the decision is made at the beginning of each period according to the 

expected order quantity before the order arrival. It likely happens that some passenger maybe 

not served if the real number of orders more than the planned ETs quantity, i.e., 𝑑𝑡,𝑖,𝑗 >

∑ 𝑦𝑡,𝑖,𝑗,𝑘
𝐾
𝑘=𝑙(𝑖,𝑗) , where 𝑑𝑡,𝑖,𝑗 is the actual order quantity from cell 𝑖 to cell 𝑗. Thus, we have the 

following constraints: 

 

∑ 𝑚𝑡,𝑖,𝑗,𝑘𝑗∈𝐼 ≤ 𝑑̃𝑡,𝑖,𝑗， 1 ≤ 𝑡 ≤ 𝑇,  1 ≤ 𝑙(𝑖, 𝑗) ≤ 𝐾, 𝑖 ∈ 𝐼                                                        (5) 

 

𝑚𝑡,𝑖,𝑗,𝑘 ≤ 𝑦𝑡,𝑖,𝑗,𝑘 ， 1 ≤ 𝑡 ≤ 𝑇,  1 ≤ 𝑙(𝑖, 𝑗) ≤ 𝑘 ≤ 𝐾, 𝑖 ∈ 𝐼                                                      (6) 
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(3) Capacity constraints of charging station 

We assume that the charging station is in the center of the cell and have 𝑁 chargers. Based on 

the IoT technology, the platform can monitor the workload of charging station. Thus, the ETS 

assign to be charged will less than the available chargers at period 𝑡. 

 

∑ 𝑥𝑡,𝑖,𝑘
𝐾−1
𝑘=1 ≤ 𝑁 − ∑ 𝑝𝑡,𝑖,𝑤

𝐾−1
𝑤=1  ， 1 ≤ 𝑡 ≤ 𝑇, 𝑖 ∈ 𝐼                                                                  (7) 

 

(4) State transition equations  

First, we consider the state transition of charging station. The number of ETs with type 𝑤 in 

cell 𝑖 at period 𝑡 + 1 is the number of Ets with type 𝑤 − 1 in cell 𝑖 at period 𝑡 add the number 

of ETs should be charged with type 𝑤 − 1 in cell 𝑖 at period 𝑡. 

 

𝑝𝑡+1,𝑖,𝑤 = 𝑝𝑡,𝑖,𝑤−1 +  𝑥𝑡,𝑖,𝑤−1,        1 ≤ 𝑤 ≤ 𝐾                                                                         (8) 

 

For state transition of available ETs. The number of available ETs with type 𝑘 in cell 𝑖 at the 

beginning of period 𝑡 + 1 is the number of available ETs with type 𝑘 in cell 𝑖 at period 𝑡 

minus ETs assign to serve ET with type 𝑘 from cell 𝑖 minus the number of ETs should be 

charged add number of ETs with type 𝑘 from other cells. Also, for the number of type 𝐾 ETs 

of the next period, it adds the number of ETs fully recharged at the charging station and 

becomes available again. 

 

𝑠𝑡+1,𝑖,𝐾 = 𝑠𝑡,𝑖,𝐾 − ∑ 𝑚𝑡,𝑖,𝑗,𝐾𝑗∈𝐼 + 𝑝𝑡,𝐾                                                                                       (9) 

 

𝑠𝑡+1,𝑖,𝑘 = 𝑠𝑡,𝑖,𝑘 − 𝑥𝑡,𝑖,𝑘 − ∑ 𝑚𝑡,𝑖,𝑗,𝑘𝑗∈𝐼 + ∑ 𝑚(𝑡−𝜕(𝑖,𝑗)−1)+,𝑗,𝑖,(𝑙(𝑖,𝑗)+𝑘)+𝑗∈𝐼 ,  1 ≤ 𝑘 ≤ 𝐾 − 1   (10) 

 

𝑠𝑡+1,𝑖,𝑘 = 𝑠𝑡,𝑖,0 − 𝑥𝑡,𝑖,0 + ∑ 𝑚(𝑡−𝜕(𝑖,𝑗)−1)+,𝑗,𝑖,𝑙(𝑖,𝑗)+𝑗∈𝐼                                                              (11) 

 

To sum up, the multi-period stochastic model is formally presented as follows. 

 

𝑃𝑟𝑜𝑏𝑙𝑒𝑚  𝑃𝑠: 
 

𝑚𝑎𝑥 𝔼𝑅∗ = ∑ 𝑟𝑡
𝑠𝑇

𝑡=1   

 

𝑠. 𝑡. (2) − (11) 

4 Rolling-Horizon framework 

In this section, a rolling-horizon framework will be applied to solve the multi-period stochastic 

problem. In actually, the probability distribution function of orders demand is difficult to 

estimate accurately. However, the historical data of orders can be easily obtained. Thus, we will 

first convert the stochastic model into a deterministic formulation based on the predicted means 

of order demand. And then, apply the rolling-horizon framework to solve the deterministic 

model with progressively issued orders. 

4.1 Deterministic model 
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With historical data, the mean of orders can be easily computed and can be used to replace the 

random order demand variable. We use 𝑑̅𝑡,𝑖,𝑗 to represent the mean of orders from cell 𝑖 to cell 

𝑗 at period 𝑡 and have the following expect reward and constrains: 

 

𝑟𝑡
𝑑 = ∑ ∑ [𝑟(𝑙(𝑖, 𝑗)) × ∑ 𝑚𝑡,𝑖,𝑗,𝑘

𝐾
𝑘=𝑙(𝑖,𝑗) − 𝜃(𝑙(𝑖, 𝑗)) × (𝑑̅𝑡,𝑖,𝑗 − ∑ 𝑚𝑡,𝑖,𝑗,𝑘

𝐾
𝑘=𝑙(𝑖,𝑗) )

+
]𝑗∈𝐼𝑖∈𝐼          (12) 

 

∑ 𝑚𝑡,𝑖,𝑗,𝑘𝑗∈𝐼 ≤ 𝑑̅𝑡,𝑖,𝑗， 1 ≤ 𝑡 ≤ 𝑇,  1 ≤ 𝑙(𝑖, 𝑗) ≤ 𝐾, 𝑖 ∈ 𝐼                                                      (13) 

  

Other constraints don’t contain order random variables and are consistent with the 

corresponding constraints in the stochastic model. Thus, the deterministic model is built as : 

 

𝑃𝑟𝑜𝑏𝑙𝑒𝑚  𝑃𝑑: 
 

𝑚𝑎𝑥 𝔼𝑅∗ = ∑ 𝑟𝑡
𝑑𝑇

𝑡=1   

 

𝑠. 𝑡. (2) − (4), (6) − (11), (13) 

 

There are a variety of deterministic optimization techniques that can be directly used to solve 

the above  problem 𝑃𝑑. In this paper, we adopt the state-of-art commercial optimization tool to 

solve the model.  The solution quality and computational efficiency of the model are evaluated 

in Section 5. 

4.2 Rolling-horizon algorithm  
The rolling-horizon framework is widely used in multi-period decision problems and shows 

good performance. In this study, the order demands are released over the period. Once it is 

released, it will have no impact on subsequent decisions. The framework of rolling-horizon is 

shown in figure 5. The model will make the decision based on the orders mean of each 

following period. Before the next period, the number of arrival orders is released. The reward 

of current period can be computed by: 

 

𝑟𝑡 = ∑ ∑ [𝑟(𝑙(𝑖, 𝑗)) × ∑ 𝑚𝑡,𝑖,𝑗,𝑘
𝐾
𝑘=𝑙(𝑖,𝑗) − 𝜃(𝑙(𝑖, 𝑗)) × (𝑑𝑡,𝑖,𝑗 − ∑ 𝑚𝑡,𝑖,𝑗,𝑘

𝐾
𝑘=𝑙(𝑖,𝑗) )

+
]𝑗∈𝐼𝑖∈𝐼   

 

Where 𝑑𝑡,𝑖,𝑗 is released the number of orders from cell 𝑖 to cell 𝑗 at period 𝑡. After that, the 

assignment decisions are implemented and the model will only be solved based on the order 

means of the following periods. 
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Figure 5: The rolling-horizon framework 

 

To sum up, the algorithm of the rolling-horizon algorithm is shown below. At the beginning 

of the period 𝑡, the platform will collect the real-time information of available ETs 𝑆𝑡,𝑖,𝑘, 0 ≤
𝑘 ≤ 𝐾, 𝑖 ∈ 𝐼 and the workload of charging station 𝑝𝑡,𝑖,𝑘, 0 ≤ 𝑘 ≤ 𝐾, 𝑖 ∈ 𝐼. Based on this 

information and order means  𝑑̅𝑡′,𝑖,𝑗, 𝑡 ≤ 𝑡′ ≤ 𝑇, the model will be solved. After that, the 

charging and order-serving decision of the current period will execute to obtain actually 

served order 𝑚𝑡,𝑖,𝑗,𝑘 and revenue 𝑟𝑡 based on the solution.  

 

For period 𝑡 = 1 to 𝑇 

Step 1: Platform collects real-time information: 𝑺𝒕,𝒊,𝒌 and  𝒑𝒕,𝒊,𝒌 at the beginning of 

period 𝑡; 

Step 2: Solve model 𝑃𝑑 with the mean 𝒅̅𝒕,𝒊,𝒋 for coming periods 𝑡′, 𝑡 ≤ 𝑡′ ≤ 𝑇; 

Step 3: Execute the charging and order-service assignments according to solution 

𝑥𝑡,𝑖,𝑘, and 𝑦𝑡,𝑖,𝑗,𝑘;  

Step 4: At the end of period 𝑡 , the served demands 𝑚𝑡,𝑖,𝑗,𝑘 are realized and the 

platform obtains the corresponding revenue  𝑟𝑡; 

End for 

5 Numerical experiment  
In this section, the performance of the model will be discussed. The historical order data were 

collected from Didi’s GAIA open dataset in the center area of Chengdu City from November 1 

to November 30, 2016. The region of order is divided into 9 cells, which is shown in figure 6. 

In the experiment, the operation horizon is from 6 a.m. to 12 p.m. the period length is set as 15 

minutes. The parameters setting is shown in table 2. The deterministic model is solved 

by IBM ILOG CPLEX Optimization Studio V12.8.0 using a PC with i7 CPU @ 3.00GHz and

 8.00G RAM. 
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Figure 6: Illustration of regional division and charging station location. 

 

Table 2: numerical experiment parameters setting  

𝑇 = 108 period 

𝐾 = 10 level 

𝐼 = 9 cells 

𝑁 = 20 chargers 

𝐸 = 100 ETs 
 

First, we will discuss the performance of the model compared with the post-optimal solution 

and decentralized case. In the post-optimal solution, the model is solved based on all released 

order demands and we use 𝐺𝑎𝑝2 =
R∗−R^

 𝑅∗
 to represent the solution gap between our model and 

the post-optimal model, where R∗ is the solution of post-optimal model and R^ is the solution 

of our model. In the decentralized case, all drivers make charging decisions that are based on 

their knowledge and only go to enter the charging station where they are located. In this 

situation, it will happen that many ETs wait at the same charging station and waste their 

operation time. The arrival orders are randomly assigned the available ETs with the constrain 

𝑘 ≥ 𝑙(𝑖, 𝑗). And the 𝐺𝑎𝑝1 =
R∗−R𝑑𝑒𝑐

 𝑅∗
 to represent the solution gap between the decentralized 

solution and post-optimal solution, where R𝑑𝑒𝑐 is the solution to decentralized strategy. And 

the experiment simulates 20 weekdays based on Didi’s historical data.  

The result is shown in figure 7. It can be seen that our solution is far better than the solution 

of decentralized. The average gap of 𝐺𝑎𝑝1 is 232% and the average 𝐺𝑎𝑝2 is 47.1%. 
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Figure 7: The result of Gap1 and Gap2 

 

Then, we compare the 𝐺𝑎𝑝1 and 𝐺𝑎𝑝2 in different chargers. The result is shown in figure 8. 

It can be seen that our model is better than the decentralized decision in different chargers. 

And 𝐺𝑎𝑝1 and 𝐺𝑎𝑝2 will decrease with the number of chargers increase.  

 

 

Figure 8: The changes of Gap1 and Gap2 under different chargers  

6 Conclusion 

In this paper, a charging and order serving problem is described. Compared with flue taxi, the 

milage of ETs are relatively short so that ETs’ driver always recharges the battery during 

operation time which will waste their time, impact the platform serving capacity, and reduce 

their revenue. Thus, we propose a centralized COSD system to solve this problem. with the 

current information of available ET and charging station workload, the decision will be made 

based on a multi-period stochastic model. To solve the model, we convert it into a deterministic 

model under the rolling-horizon framework. During the numerical experiment, our model is far 

better than the decentralized strategy and shown a better performance with chargers increase. 

In future work, we will use the data-driven approach like SAA to replace the order means when 

converting the stochastic model into the deterministic. Also, the model can be built in the 

framework of the Markov Stochastic Process and use some state-of-art approaches like 

reinforcement learning to solve the problem. In this paper, we assume that drivers are 

unconditionally subject to decisions made by the platform. However, in practice, drivers have 
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their charging preferences. Therefore, in the following study, we will focus on how to set 

incentive prices to make drivers willing to obey the decisions made by the COSD system. 
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