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Abstract: The transportation task assignment for vehicles plays an important role in city 

logistics of the physical internet, which is the key to cost reduction and efficiency improvement. 

The development of information technology and the emergence of “sharing economy” create a 

more convenient logistics mode, but also bring a greater challenge to efficient operation of 

urban transportation physical internet. On the one hand, considering the complex and dynamic 

environment of urban transportation, an efficient method for assigning transportation tasks to 

idle vehicles is desired. On the other hand, to meet the users’ expectations on immediate 

response of vehicle, the task assignment problem with dynamic arrival remains to be resolved. 

In this paper, we proposed a dynamic task assignment method for vehicles in urban 

transportation physical internet based on the multi-agent reinforcement learning. The 

transportation task assignment problem is transformed into a stochastic game process from 

vehicles’ perspective, and then an extended actor-critic algorithm is proposed to obtain the 

optimal strategy. Based on the proposed method, vehicles can independently make decisions in 

real time, thus eliminating a lot of communication cost. Compared with the methods based on 

FCFS (first come first service) rule and classic contract net, the results show that the proposed 

method can obtain higher acceptance rate and average return in the service cycle. 

Keywords: urban transportation physical internet, transportation task assignment, multi-agent 

reinforcement learning, actor-critic algorithm. 

1 Introduction 

With the increasingly fierce market competition and the advancement of information 

technology, the existing city logistics modes are developing towards an energy-saving, efficient 

and shareable manner. In particular, the novel mode combining city logistics with physical 

internet, so-called hyperconnected city logistics (Ballot et al., 2014; Kubek and Więcek, 2019; ), 

makes traffic management system to operate more effectively by big data analysis and machine 

intelligence algorithms (Zhong et al., 2017; Kaffash et al., 2020). In this kind of traffic 

management system, assigning transportation tasks to vehicles is one of the most important 

services. Rapidity and rationality are the guarantee for the satisfaction of both users and drivers. 

However, the sharp increase in transportation demands and vehicle quantities have brought 

great challenges to existing task assignment methods.  

Traditional modeling methods are usually based on simplified constraints and steady-state 

assumptions, such as mathematical programming (Russell, 2017), graph theory (Xia et al., 2019) 

and Markov model (Hasan and Ukkusuri, 2017), which are difficult to handle complex and 

dynamic task assignment problem for vehicles. The rule-based task assignment method can 

better ensure the real-time decision-making, but the acceptance rate of task assignment and the 

average return of the system should be further improved. With the storage of vehicles operation 

data, it is theoretically possible to obtain a decision scheme through existing data learning 

(Morin et al. 2020). Multi agent can use distributed structure to describe complex and dynamic 

urban transportation system, so as to reduce the complexity of the system. Reinforcement 

learning interacts with environment through trial and error, which is suitable for decision-
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making problems of the complex dynamic system with large uncertainty and difficult to be 

solved by traditional methods (Haydari and Yilmaz, 2020). Therefore, the task assignment 

problem is described as a multi-person multi-stage stochastic game process under cooperative 

conditions in this paper. A reward-driven decision evaluation method is adopted and the multi-

agent reinforcement learning algorithm serves as a solution framework for the problem.  

The main works and contributions of this paper include: 1) For task assignment problem, to 

meet the requirement of immediate response to transportation tasks of users, a stochastic-game-

based event-driven task assignment model is developed. It models nodes in transportation 

network as agents, vehicles at node as agents’ resources. Dynamic transportation tasks will 

trigger the corresponding nodes to make decisions. 2) An extended actor-critic (AC) algorithm 

is proposed to solve the developed task assignment model and obtain the optimal strategy. This 

algorithm consists of several actor networks and one centralized critic network. In training 

process, agents update parameters of actor and critic networks based on experiences of 

interacting with environment and state value generated by critic network, and achieve ideal 

synergy. In testing process, agents are able to provide online decision only based on their state. 

3) Simulation and comparison experiments was carried out in Didichuxing’s open source data 

(DiDi, 2020), which shows that the proposed model and algorithm for dynamic task assignment 

of vehicles can significantly improve the acceptance rate of task assignment and the average 

return of the system. This study can also provide a reference for practical applications. 

The rest of paper is organized as follows. Section 2 gives the literature review on the related 

works. Then in Section 3, we proposed the networked description of urban transportation and 

developed an event driven task assignment model based on stochastic game. The extended 

actor-critic algorithm was put forward for model solution in Section 4. Simulation experiments 

and results analysis are given in Section 5. Finally, the conclusions are summarized in Section 

6. 

2 Related works 

Task assignment problem has always been a hot topic in the fields of enterprise staffing 

(Bouajaja and Dridi, 2015), factory machine scheduling (Liu et al., 2019), satellite resource 

scheduling (Gabrel and Vanderpooten, 2002) and transportation (Lin et al., 2001; Srivastava et 

al., 2008; Glaschenko et al. 2009; Seow et al., 2009; Zhen et al., 2019; Zhang et al., 2018). 

Transportation task assignment is to reasonably arrange the correspondence between vehicles 

and tasks, and to propose an immediate task assignment scheme. This problem involves 

multiple dynamic tasks and limited resources, which is a typical combinatorial optimization 

problem and also an NP-hard problem. It requires online response to randomly arrived demand, 

and the information at the time of decision-making is incomplete, including only the current 

and historical resources and demand information. These features make it difficult to be 

effectively solved as the general assignment (Chekuri and Khanna, 2005) or knapsack problems 

(Kleywegt and Papastavrou, 1998). The current literature mainly employs mathematical 

programming, graph theory, simulation or multi-agent models to solve it.  

When the target problem only contains a small-scale task or a single type of resource, the 

mathematical programming model can be established to obtain the exact solution. Considering 

the individual and collaborative factors involved, Chen et al. (2009) established a multi-

objective optimization model to solve the matching problem between employees and tasks. 

Some researchers also employed heuristic algorithms to solve complex problems with many 

constraints, which greatly reduce the computation time and memory consumption. Deng et al. 

(2016) proposed an accurate algorithm and an approximate algorithm for the matching of staffs 
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and tasks in the crowdsourcing platform, in which the accurate algorithm is difficult to run 

because of excessive memory consumption, but the response time of the approximate algorithm 

is less than millisecond. Abstracted the task allocation problem of unmanned aerial vehicles 

(UAV) as a collaborative multi-task allocation problem, Jia et al. (2018) developed the 

mathematical model with kinematic, resource and time constraints, and used the improved 

genetic algorithm to get the solution of the problem. 

The structure of the system can be described intuitively by the node, link and weight in the 

graph theory model. Gabrel and Vanderpooten (2002) established a graph theory model for the 

problem of satellite and observation task matching. Further, the shortest path algorithm is used 

to obtain the task planning scheme to achieve the maximum benefit. Kachroo and Sastry (2016) 

proposed a travel time function based on traffic density, and established a mathematical 

programming model to solve the user balance and route allocation schemes by using the node 

traffic balance in the directed graph with consideration of the intersection time delay.  

When the dynamic characteristics cannot be fully expressed by mathematical equations, 

simulation models can be employed to model the problem. Lin et al. (2001) simulated the 

freight transportation system in the production logistics by using the combination of the first 

come first serve rule and the nearest vehicle first rule. Theoretically, the more perfect the actual 

situation is, the more detailed and accurate the simulation model is, and the more credible the 

simulation results are. Jorge et al. (2014) confirmed that the mathematical model can get the 

optimal results, but it needs longer computation time than the simulation model. As for some 

problems with random and uncertain events, the simulation models can better reflect the 

effectiveness of the algorithm. However, the modeling and maintenance costs of the simulation 

models are higher, so it is not suitable for complex systems. 

With the advantages of solving large-scale problems, multi-agent systems for task assignment 

problem have been widely concerned (Srivastava et al., 2008; Seow et al., 2009; Glaschenko et 

al., 2009; Hao et al., 2013; Lan, 2018). This method essentially enables information sharing 

between agents through direct or indirect communication to achieve decision sharing. Moreover, 

some studies have applied multi-agent-based reinforcement learning methods to transportation 

industry and have achieved good results. A distributed multi-agent deep reinforcement learning 

method was adopted to solve the problem of controlling traffic signals in a complex urban 

transportation network, and good results were achieved in terms of optimality and robustness 

(Chu et al., 2019). Lin et al. (2018) proposed two algorithms based on multi-agent 

reinforcement learning framework to generate a decision-making scheme for large-scale fleet 

management of a travel platform. The algorithms can capture supply and demand changes in 

high-dimensional spaces and formulate corresponding balancing strategies. It is verified in 

practice that multi-agent systems can significantly improve the utilization of transportation 

resources. These studies in the context of transportation show that the idea of employing multi-

agent reinforcement learning to solve transportation task assignment is feasible. 

In short, researches of task assignment problem in many fields are gradually increasing and 

deepening, and have achieved good results in practical applications. However, there are still 

some problems such as lack of consideration of random and uncertain factors in practice, and 

the resulting decision scheme has low flexibility and lag. Especially for the complex and 

dynamic environment of urban transportation, many algorithms cannot be directly applied. 

Therefore, in order to improve and solve the above problems, this study proposed a multi-agent 

reinforcement learning algorithm to solve the problem of transportation task assignment. 
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Figure 1:  Networked description for urban transportation 

3 Event-driven task assignment model based on stochastic game 
theory 

In this section, the networked description of urban transportation is proposed, and an event 

driven task assignment model based on stochastic game is developed. 

3.1 Networked Description of Urban Transportation 

Based on the idea of graph theory, the complex urban transportation system is abstracted as a 

complex network G = (N, E) composed of nodes and edges (see Figure 1). N = {Node1, 

Node2, …, Noden} is the set of nodes in the complex network, which represent various areas of 

urban roads. E = {Edge 12, Edge 21, …, Edge ij} is the set of edges in the complex network. There 

are two edges Edge ij and Edge ji connected between any two adjacent nodes Nodei and Nodej. 

In our opinion, any known urban transportation system can be described by G. 

Vehicles and tasks in the transportation network are denoted by V and T, where V = {Vehicle1, 

Vehicle2, …} is the set of vehicles, and T = {Task1, Task2, …} is the set of tasks. We defined 

cit as the total vehicle resource at Nodei at time t, li,t as the total transport task for Nodei at time 

t. The service period is usually divided into days or months, which is expressed as P. In order 

to describe the dynamic changes in the environment and resources, time is discretized, and the 

service period of the vehicle between any two adjacent nodes is taken as the time interval Δt. 

Before developing task assignment model, we made the following assumptions based on the 

networked description for urban transportation: 

1) Modeling objects are moments and places where demand is greater than supply. Based on 

analysis of real scenarios, when demand is less than supply or supply and demand are balanced, 

as long as any demand arrives, timely response can ensure that the global benefit is maximized. 

In that case, no task assignment and evaluation are required. 

2) Each period in service cycle is the assignment period of the transportation task, P = [Pstart, 

Pend] where Pstart is the start time of the round of assignment, Pend is the end time of the round 

of assignment, Δt = Pend − Pstart is the time interval. 

3) Vehicle resources of node are updated before start time Pstart, which includes: the remaining 

vehicles of the node in the previous period, the vehicles that arrived from other nodes in the 

previous period, and the vehicles that completed the transportation task to reach the destination 

node.  
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4) In the same assignment period, except for assignment decisions, the number of vehicles at a 

node will not increase or decrease due to external factors. The number of vehicles at a node is 

the maximum number of tasks that the node can accept during this period. 

5) Transport tasks are represented as task = {Notask, te, tw, td, nodedep, nodedest, v, m}, where 

Notask is the number of tasks; ta, twand td denote the task assignment, waiting and delivery time, 

respectively; nodedep and nodedep are places of departure and destination, respectively; v is task 

value and m is the order in which tasks arrive. 

6) For tasks that are not accepted during the task assignment period, if there is a waiting time 

tw ≠ 0, the assignment request can be re-initiated in multiple assignment periods of ta + td, and 

it has higher priority in new assignment period, which means mold < mnew. 

3.2 Stochastic game and model development 

Stochastic game. Multi-agent reinforcement learning has the characteristics of multi-stage of 

the Markov decision process, and also has the characteristics of multi-participant of matrix 

games, so it is usually expressed by a stochastic game that combines the two. Stochastic game 

is a type of dynamic game with state probability transition, which is performed by one or more 

participants. It can be defined as: 

 

( , , , , )i iSG n S A P R           (1) 

 

where n is the number of agents; S is the state set of the environment; Ai refers to action set that 

agent i can choose; P represents the state transition probability; Ri is the agent’s return function. 

In this process, multiple agents make a choice of actions, and the next state and reward of the 

environment is determined by the joint actions of multiple agents (see Figure 2). 

Si-1 Si Si+1 Si+2

Ai-1 Ai Ai+1

{A(1),i-1,A(2),i-1, ,A(n),i-1}

agent1

agent2

agentn

    

R(3),i-1 R(3),i R(3),i+1

R(2),i-1

R(1),i-1

R(2),i

R(1),i

R(2),i+1

R(1),i+1

 

Figure 2: Stochastic game 

Stochastic games are aimed at solving the Nash equilibrium, but under normal conditions, the 

transfer function and return function are unknown. In reinforcement learning, the agent learns 

the equilibrium strategy through interaction with the environment, and uses the rationality and 

convergence to evaluate algorithm performance (Bowling and Veloso, 2002). 

Agent. Each node in the transportation network is considered as an agent. Without considering 

factors such as driver’s historical order acceptance rate and preferences, the vehicles are no 

difference in the same or similar locations. Therefore, each node has two states: demand 

-105-



 
Wei Qin, Yanning Sun, Zilong Zhuang, Zhiyao Lu and Yaoming Zhou 

6 
 

vehicles or supply vehicles, which also denotes agent states. Vehicles are the resource owned 

by nodes, that is, attributes of agents. In practice, there is a one-to-one assignment relationship 

between the transportation task and the vehicle. If each vehicle is assigned to a transportation 

task, most of the other joint actions are invalid. Compared with considering vehicles as agents 

in the literature (Gupta et al. 2017), our agent setting method can greatly reduce the number of 

agents, and further reduce the environment’s joint action space and calculations.  

State. When task arrives, the task’s destination and the estimated value can be observed by the 

node. The resource of other nodes has little influence on the decision of the vehicles in this 

node, thus only the remaining vehicle resources of this node are considered. The environmental 

information observed by each agent can be defined as the resource remaining, task information 

and time information of the node where the vehicle is located: 

 

{ , , }remain task time

i i i ts c s s           (2) 

 

where remain

ic  is the remaining resources of current node and time

ts  is the current assignment time. 

The task that arrives can be expressed as,  

 

{ , , , , , , , }e w d dep dest

i itask i t t t node node v m         (3) 

 

where the state of the task can be represented as task

ts  = {nodedest, vi}. 

Action. For any task k that arrives at node i, its departure node and its neighboring nodes can 

choose whether to accept the task, 

 

, {0,1}i ka            (4) 

 

where ai,k = 0 denotes that the task is rejected and ai,k = 1 denotes that the task is accepted. 

Reward. The rewards obtained from the interactive feedback between nodes and the 

environment are determined by the node state and actions simultaneously. When the taskk = {k, 

te, tw, td, nodedep, nodedest, vi, m} arrives at t, the reward received by the node is defined as, 

 

,

,

0, when node rejects task

, when node accepts taskremainii k
j

i k

i k

vr
c i k

a
 

      (5) 

 

where vi is task value and ai,k is the number of nodes that choose to accept the task. When 

more nodes choose to accept the task, the nodes can get less rewards. remain

jc  is the remaining 

resources of the current node. When there are more remaining resources j, the greater the reward 

that the node can get, the more inclined it is to accept the task.  and β are normalized 

coefficients for task value and resource consumption, which is to eliminate the difference in 

feature vector values of different dimensions. 

State probability transition. The vehicle resource distribution and node location information 

during the service period are known, but the specific information of the next arrival task is 

unknown. And the environment condition will refresh between periods, so that the vehicle 
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resource distribution changes on each node and the state transition probability function is 

unknown.  

End time. For the entire assignment process, task assignment is terminated when the service 

cycle ends. In a certain assignment period, when the vehicle resources of each node in the 

transportation network run out, the next assignment period is started. 

 

,
, 0curr

i

end

curr curr

i tnode Node

t T

t t t if c
        (6) 

 

where tcurr refers to the current time of the environment and 
, curr

inode Node i t
c  is the total number of 

vehicle resources in the transportation network during the tcurr period. 

4 Extended actor-critic algorithm for model solution 

The AC algorithm (Konda and Tsitsiklis, 2000; Bhatnagar et al., 2008; Babaeizadeh et al., 2016) 

is the basic framework we adopt, which combines value function-based and policy gradient-

based methods, improves the limit of the state space dimension in the value function-based 

method, and solves the randomness of the environment that causes the estimated policy gradient 

to have a large variance in multiple samplings. The framework consists of two networks, one 

is the actor network π(s, a, θ), which is used to optimize agent strategies; the other is the critic 

network q̂ (s, a, ω), which is used to estimate the value function. Parameters of the neural 

network are θ and ω, respectively. Based on critic’s evaluation for the action taken, actor will 

adjust its strategy, and critic will update the value function based on experience and rewards. 

4.1 Network Structure 

In the extended AC framework, we establish different actor networks for different agents, which 

can maintain its own network parameters. In actual situations, there is a difference in the 

probability distribution of tasks arriving at different locations in the city. For example, the tasks 

at the center of the city have a short distance and a short time, and tasks at the edge of the city 

may take longer and be more valuable higher. If a network is simply described by shared 

parameters, the differences between nodes cannot be reflected, which may cause problems such 

as the difficulty in convergence of results. Therefore, we proposed a centralized training and 

distributed execution structure. During the training process, each agent learns strategies from 

observations and actions of its own environment. A centralized critic network uses the 

observation status of each node as input, and updates the rewards obtained by the actor’s action 

feedback based on the environment. In this process, centralized training can make the strategies 

of each agent achieve tacit coordination, while decentralized execution can extract the local 

strategies of each agent from the global strategy, thereby achieving the purpose of task 

assignment. 

Figure 3 shows the distributed network structure used in this study. There are two parts, multiple 

networks for executing strategies and a centralized value function network. Strategy network 

and value function network in the figure are both multi-layer feedforward neural networks with 

three layers.  

4.2 Network Training 

Actor’s policy gradient is calculated by, 
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Figure 3: Extended AC decision model framework 

 

Table 1: Extended AC algorithm 

input: environment, number of iterations N, period T, number of nodes n, state 

space dimension, action space dimension, step size , β, attenuation factor γ, 

exploration rate ε, critic network structure and actor network structure 

output: actor network parameters θ1, θ2, ..., θn, critic network parameters ω 

Initialize network parameters 

for i from 1 to N do 

Initialize the environment and get the initial state s0 

for t from 1 to T do 

j = 0 

while there are tasks and vehicle resources left at target node 

for k from 1 to n do 

use st in the network as input, output action at, k 

perform actions to get feedback rt and next state st+1 

end for 

calculate dominance function and target critic network value 

function 

j = j + 1 

for m from j to 1 do 

Actor network parameter update 

Critic network parameter update 

end for 

end for 

end for 

 

π π( ) [ logπ ( , ) ( , )] [ logπ ( , ) ( , , )]t t t t t tJ E s a V s E s a A s t
           (7) 

 

Advantage function A is used as the evaluation point of critic network, which can be defined as 

the difference between the action value function and the state value function, and replaced by 

its unbiased estimate. 
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1( , ) ( ) ( )tA s t r V s V s          (8) 

 

Critic network loss is the squared loss of actual state value and estimated state value, and its 

parameters are updated using time difference (TD). 

 
2

π 1

π 1 1 1

min ( ( , ') ( , ))

( , ') π( , )( ( , '))

t t

t t t t t

V s V s

V s s a r V s

 

  
       (9) 

 

Whenever a new task arrives, vehicles at the same node will accept the same decision, that is, 

intelligent node will give a unified decision of vehicles at that node, and select one of the 

vehicles to complete the real matching action. This method can reduce the task contradictions 

between matching decisions. In addition, when multiple nodes are involved in task matching, 

there may still be conflicts between the actions given by the nodes. In order to meet the 

constraint of the task’s uniqueness, the state value generated by the centralized evaluation 

network is used as the basis for the final action selection for task coordination between nodes. 

The pseudocode is shown in Table 1. 

5 Experiment 

5.1 Data and Simulation Environment 

Didichuxing’s open source data (DiDi, 2020) is used to verify the effectiveness of the proposed 

method. Some data samples are shown in Table 2. By analyzing and visualizing the data, it can 

be seen that the attributes of the task have different characteristics in different periods, such as 

7: 30-7: 40 and 19: 50-20: 00, as shown in Figures 4, 5, respectively. The tasks submitted in the 

two periods are divided according to the places of departure and destination. The number of 

tasks contained in each place can be seen from the figure. The place of departure is more 

scattered, and the place of destination is relatively concentrated for the period 7: 30-7: 40, while 

the period 19: 50-20: 00 is the opposite. The results of this analysis are also consistent with 

actual life experiences. 

Table 2: Data samples 

Orders number mjiwdgk f78cfb7e 5c33acbf … 

Start billing time 1501581031 1477963587 1477965143 … 

End billing time 1501582195 1477965143 1477959461 … 

Longitude of departure position 104.11225 104.05412 104.07139 … 

Latitude of departure position 30.66703 30.67206 30.71631 … 

Longitude of destination position 104.07403 104.06614 104.05733 … 

Latitude of destination position 30.686300 30.709336 30.699250 … 

 

The proposed method uses a distributed network structure with high complexity. In order to 

reduce training costs and time, we only considered a part of nodes in the urban transportation 

network. In this experiment, five nodes were selected as the modeling objects. The total number 

of tasks and the total number of vehicle resources for these selected regional nodes are shown 

in Figure 6. The average order acceptance rate of the nodes is about 82.866%, which means the 

demand for vehicle resources exceeds the supply for a long time. 

-109-



 
Wei Qin, Yanning Sun, Zilong Zhuang, Zhiyao Lu and Yaoming Zhou 

10 
 

 

Figure 4: Distribution of orders' departure and arrival in 7:30-7:40 

        

Figure 5: Distribution of orders' departure and arrival in 19:50-20:00 

 

Figure 6: Number of orders and vehicles in local areas 

5.2 Result Analysis 

Task acceptance rate and profit rate are used to evaluate the performance of the method. Task 

acceptance rate is the ratio of the number of tasks accepted to the total number of tasks, and 

profit rate is the ratio of the total value of accepted tasks to the total task value.  
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Figure 7: Task acceptance rate change with training episodes 

 

Figure 8: Profit rate change with training episodes 

Figures 7 and 8 show the changes in the task acceptance rate and profit rate of the proposed 

method with training rounds, where blue is the true value and red is the average. The trends in 

the two figures are basically consistent. At the beginning of training, the agent belongs to the 

tentative exploration stage, and the task acceptance rate and profit rate have both declined 

slightly, but then gradually increased. It can be seen that the task acceptance rate and profit rate 

gradually stabilized after training to about 35,000 rounds, when the model gradually converges. 

Figure 9 shows the number of remaining vehicles in each round during the training process. A 

large amount of vehicle resources was idle during the initial training period. By learning the 

acceptance and rejection strategy for transportation tasks, the wasted vehicle resources of each 

modeling node are reduced gradually. 

First-come-first-served (FCFS) task assignment method and contract network are used for 

comparing with the proposed method. FCFS method means that if a transport task arrives and 

the task departure node still has idle vehicles remaining, the task is assigned to it. If there is no 

idle vehicle remaining at the node, the transportation task is assigned to the neighboring node 

-111-



 
Wei Qin, Yanning Sun, Zilong Zhuang, Zhiyao Lu and Yaoming Zhou 

12 
 

with idle vehicles. The contract net algorithm (CNA) is appropriately modified to fit the context 

of this paper (Hu et al., 2019). 

Table 3 compares the experimental results of different algorithms with the proposed method. 

As can be seen from the data in this table, the task acceptance rate of each algorithm is similar, 

but our method performs better in profit rate, which means that it is effective and can make the 

vehicle obtain greater benefits. 

 

Figure 9: Number of remaining vehicles change with training episodes 

Table 3: Comparison of task acceptance rate and profit rate of different algorithms 

Algorithms task acceptance rate profit rate 

FCFS 89.373% 87.068% 

CNA 89.565% 88.203% 

Proposed method 89.555% 89.159% 

6 Conclusion 

A reasonable and efficient task assignment method is the direct means to improve the revenue. 

This paper proposed a dynamic task assignment method for vehicles in urban transportation 

based on multi-agent reinforcement learning. Aiming at the problem of unreasonable task 

assignment due to greedy choice, an event-driven random game model was developed to 

describe the task assignment problem of vehicles. An extended actor-critic (AC) algorithm is 

proposed for model solution. The distributed network structure is used to construct a learning 

framework with the positions of various nodes as the decision-making subject in the urban 

transportation network. By comparing with the mainstream task assignment methods, our 

method can make vehicle operators achieve higher revenues while ensuring immediate response 

to transportation tasks. 

Since the adopted framework involves the parallel computation of multiple neural networks 

and takes a long time for training and parameter optimization, the proposed method still has 

some shortcomings. In the subsequent research, the framework structure or mapping 

relationship can be further optimized to reduce its complexity and thus have more practical 

value. 

Acknowledgment 

-112-



 
Multi-agent reinforcement learning-based dynamic task assignment for vehicles in urban 

transportation physical internet 

13 
 

The authors would like to acknowledge financial supports of the National Natural Science 

Foundation of China (No. 51775348), and the National Key Research and Development 

Program of China (No. 2019YFB1704401).  

References 

• Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., Kautz, J. (2016). Reinforcement learning 

through asynchronous advantage actor-critic on a gpu. arXiv preprint arXiv:1611.06256. 

• Ballot, E., Montreuil, B., Meller, R. (2014): The physical internet. 

• Bhatnagar, S., Ghavamzadeh, M., Lee, M., Sutton, R. S. (2008). Incremental natural actor-critic 

algorithms. Advances in neural information processing systems, 105-112. 

• Bouajaja, S., Dridi, N. (2015). Research on the optimal parameters of ACO algorithm for a human 

resource allocation problem. 2015 IEEE International Conference on Service Operations and 

Logistics, and Informatics (SOLI), 60-65, doi: 10.1109/SOLI.2015.7367412. 

• Bowling, M., Veloso, M. (2002). Multiagent learning using a variable learning rate. Artificial 

Intelligence, v136, no2, 215-250. 

• Chekuri, C., Khanna, S. (2005). A polynomial time approximation scheme for the multiple 

knapsack problem. SIAM Journal on Computing, v35, no3, 713-728. 

• Chen, X., Fan, Z. P., Li, Y. H. (2009). Matching Problem of Employee and Task Based on 

Individual and Cooperative Factors. Industrial Engineering and Management, v14, no2, 120-124. 

(in Chinese). 

• Chu, T., Wang, J., Codecà, L., Li, Z. (2019). Multi-agent deep reinforcement learning for large-

scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems, v21, no3, 

1086-1095. 

• Deng, D., Shahabi, C., Demiryurek, U., Zhu, L. (2016). Task selection in spatial crowdsourcing 

from worker’s perspective. GeoInformatica, vol20, no3, 529-568. 

• DiDi. (2020). GAIA open dataset. https://gaia.didichuxing.com. 

• Gabrel, V., Vanderpooten, D. (2002). Enumeration and interactive selection of efficient paths in a 

multiple criteria graph for scheduling an earth observing satellite. European Journal of Operational 

Research, v139, no3, 533-542. 

• Glaschenko, A., Ivaschenko, A., Rzevski, G., Skobelev, P. (2009). Multi-agent real time scheduling 

system for taxi companies. 8th International Conference on Autonomous Agents and Multiagent 

Systems (AAMAS 2009), 29-36. 

• Gupta, J. K., Egorov, M., Kochenderfer, M. (2017). Cooperative multi-agent control using deep 

reinforcement learning. International Conference on Autonomous Agents and Multiagent Systems 

Springer, Cham, v10642, 66-83. 

• Hao, H., Jiang, W., Li, Y., Yuan, Z. (2013). Research on agile satellite dynamic mission planning 

based on multi-agent. Journal of National University of Defense Technology, v35, no1, 53-59. (in 

Chinese). 

• Hasan, S., Ukkusuri, S. V. (2017). Reconstructing activity location sequences from incomplete 

check-in data: a semi-Markov continuous-time Bayesian network model. IEEE Transactions on 

Intelligent Transportation Systems, v19, no3, 687-698. 

• Haydari, A., Yilmaz, Y. (2020). Deep reinforcement learning for intelligent transportation systems: 

a survey. IEEE Transactions on Intelligent Transportation Systems, doi: 

10.1109/TITS.2020.3008612. 

-113-

https://gaia.didichuxing.com/


 
Wei Qin, Yanning Sun, Zilong Zhuang, Zhiyao Lu and Yaoming Zhou 

14 
 

• Hu, Y., Li, C., Zhang, K., Fu, Y. (2019). Task allocation based on modified contract net protocol 

under generalized cluster. Journal of Computational Methods in Sciences and Engineering, v19, 

no4, 969-988. 

• Jia, Z., Yu, J., Ai, X., Xu, X., Yang, D. (2018). Cooperative multiple task assignment problem with 

stochastic velocities and time windows for heterogeneous unmanned aerial vehicles using a genetic 

algorithm. Aerospace Science and Technology, v76, 112-125. 

• Jorge, D., Correia, G., H., A., Barnhart, C. (2014). Comparing optimal relocation operations with 

simulated relocation policies in one-way carsharing systems. IEEE Transactions on Intelligent 

Transportation Systems, v15, no4, 1667-1675.  

• Kachroo, P., Sastry, S. (2016). Traffic assignment using a density-based travel-time function for 

intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, v17, 

no5, 1438-1447.  

• Kaffash, S., Nguyen, A. T., Zhu, J. (2020). Big data algorithms and applications in intelligent 

transportation system: A review and bibliometric analysis. International Journal of Production 

Economics, v231, no107868, 1-15. 

• Kleywegt, A. J., Papastavrou, J. D. (1998). The dynamic and stochastic knapsack problem. 

Operations research, v46, no1, 17-35. 

• Konda, V., R., Tsitsiklis, J., N. (2000). Actor-critic algorithms. Advances in neural information 

processing systems. 

• Kubek, D., Więcek, P. (2019). An integrated multi-layer decision-making framework in the 

physical internet concept for the city logistics. Transportation Research Procedia, v39, 221-230. 

• Lan, C. (2018). Research on multi-task rapid scheduling technology for satellite networks. M. S. 

thesis, Xidian University, China. (in Chinese). 

• Lin, J., T., Wang, F., K., Yen, P., Y. (2001). Simulation analysis of dispatching rules for an 

automated interbay material handling system in wafer fab. International Journal of Production 

Research, v39, no6, 1221-1238. 

• Liu, J., L., Wang, L., C., Chu, P., C. (2019). Development of a cloud-based advanced planning and 

scheduling system for automotive parts manufacturing industry. Procedia Manufacturing, v38, 

1532-1539. 

• Lin, K., Zhao, R., Xu, Z., Zhou, J. (2018). Efficient large-scale fleet management via multi-agent 

deep reinforcement learning. Proceedings of the 24th ACM SIGKDD International Conference on 

Knowledge Discovery & Data Mining, 1774-1783. 

• Morin, M., Gaudreault, J., Brotherton, E., Paradis, F., Rolland, A., Wery, J., Laviolette, F. (2020). 

Machine learning-based models of sawmills for better wood allocation planning. International 

Journal of Production Economics, v222, no107508, 1-10. 

• Russell, R. A. (2017). Mathematical programming heuristics for the production routing problem. 

International Journal of Production Economics, v193, 40-49. 

• Seow, K. T., Dang, N. H., Lee, D. H. (2009). A collaborative multiagent taxi-dispatch system. IEEE 

Transactions on Automation science and engineering, v7, no3, 607-616. 

• Srivastava, S. C., Choudhary, A. K., Kumar, S., Tiwari, M. K. (2008). Development of an 

intelligent agent-based AGV controller for a flexible manufacturing system. The International 

Journal of Advanced Manufacturing Technology, v36, no7-8, 780. 

• Xia, F., Wang, J., Kong, X., Zhang, D., Wang, Z. (2019). Ranking station importance with human 

mobility patterns using subway network datasets. IEEE Transactions on Intelligent Transportation 

Systems, v21, no7, 2840-2852. 

-114-



 
Multi-agent reinforcement learning-based dynamic task assignment for vehicles in urban 

transportation physical internet 

15 
 

• Zhang, Y. H., Gong, Y. J., Chen, W. N., Gu, T. L., Yuan, H. Q., Zhang, J. (2018). A dual-colony 

ant algorithm for the receiving and shipping door assignments in cross-docks. IEEE Transactions 

on Intelligent Transportation Systems, v20, no7, 2523-2539. 

• Zhen, L., Yu, S., Wang, S., Sun, Z. (2019). Scheduling quay cranes and yard trucks for unloading 

operations in container ports. Annals of Operations Research, v273, no1, 455-478. 

• Zhong, R. Y., Xu, C., Chen, C., Huang, G. Q. (2017). Big data analytics for physical internet-based 

intelligent manufacturing shop floors. International journal of production research, v55, no9, 2610-

2621. 

-115-


